Gloomy Friday

0
No votes yet
Your rating: None

            It was just a usual day for Stacy, except that she dropped her daughter, Helen, earlier than the other days. When Stacy arrived home, her phone suddenly started to ring.
                “Hello?”
Stacy answered. However, over the phone, there was no answer.
                “Hello!”
                “I got your daughter.”
The deep, low voice answered slowly saying that he had captured her daughter. For the first few moments, Stacy couldn’t say anything. At first, she couldn’t understand what the stranger had saying. And then, she was completely seized by the sudden panic. She surely knew that she had dropped her daughter at school and even saw that Helen walked into the school with her friend. And yet, this person said he has her daughter.
                 “Who are you? Can I hear my daughter’s voice? If you are lying, I will call the police,” she              answered with a trembling voice. Instead of answering her question, the strange caller said,
                  “To save your daughter, bring $2,000 to Youth Park.”
Then, Stacy could faintly hear the voice of a girl over the phone.
                 “Mom? Is it you? Mom!”
‘Is this Helen’s voice? If it’s her, how could this happen? Where is she? I just saw Helen going into school. What should I do?’ In her mind, all the questions got confused.
            After few minutes to arrange her thought, she decided to call school and ask about her daughter. After several attempts, the officer of the school front desk finally answered to the phone.
                “Yes”
                “Hi, this is Helen Johnson’s mom. Is Helen in the class?”
                “Yes, she is. She better be in the math class. Otherwise, she will get a detention.”
The officer answered with an irritated voice.
                “But..but.. I just got a call…Hello? Hello? ”
 The phone was already cut off. Even though Stacy wasn’t quite sure whether Helen is truly in her class or not, she decided to not call again with the belief that her daughter is in the school safely. Then, whose was the voice over the phone? Wasn’t it Helen’s voice? Even though Stacy got an answer from the school, she wasn’t feeling quite relieved. There was still an unsolved feeling in her mind.
Soon after, her phone started to ring again. Stacy answered with an exhausted voice,
                “Hello?”
“Don’t you want to save your daughter? This is a warning. Bring $2,000 to Youth Park at 11:00 am.”
 This time, he only talked about what he wanted and hung up. It was already 10: 30 am. She didn’t have much time and she needed to make a decision. The school officer said her daughter, Helen, was in school and the strange caller said her daughter had with him. Stacy saw her daughter went to school when she dropped her school and Stacy heard her daughter’s voice over the phone. Stacy was still confused with everything. However, the time was still ticking. ‘10:31…10:32…10:33…’
          While Stacy was in deep affliction, there was a sudden knocking on the door. Disturbed in mind, she opened the door slowly.
“Hi, Mom. I felt sick during math class so I came back home early.”
When Stacy about to say her first word to Helen, her phone started to ring again.
“It’s already 11:00 am. I will give you a last chance to bring your money. Bring it by 11:30 am. Unless, you won’t see your daughter again.”
 
 

Newsletter Signup

Submit your email address so we can send you occasional competition updates and tell you who wins!

Quantum Theories

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.