Living Dead

2
Average: 2 (1 vote)
Your rating: None

"I think you've had enough for tonight, Prof." "Perhaps one for the road, Daniel," he says. Danny goes to speak, then reaches for a glass and pours a shot of vodka. "It's a long road." Danny laughs and adds another shot. He takes the glass and swallows its contents in one go. He places the glass back on the bar and walks with care to the door. "Goodnight, Daniel." "Night, Prof." His flat is only a few doors down from DJ's. Erwin waits for him inside the door and greets him with a miaow. "Not dead yet?" Their private joke. He does not feel hungry, but wonders if should he eat anyway. He has noticed recently that his clothes look too big on him. The incredible shrinking man. He makes a cheese sandwich and gives Erwin some chopped liver. He pours himself a tumbler of vodka and flops down into his armchair. He wakens sometime during the night. Disorientated, he lurches to his feet, stumbles to the sink and gags, but does not get sick. He breathes deeply, steadies himself. He reaches for the bottle and drinks. His eyes fall on the untouched cheese sandwich. It makes him queasy to look at it. He takes another swig. It is late morning when he surfaces. He is face down on his bed. Erwin is scratching to get into the room. "Not dead yet," he mumbles. Daylight shafts in through the threadbare curtains. It hurts his eyes. He turns over and stares at the framed photograph of Laura and Beth on the bedside table. He reaches out to them, touches cold glass. Back in DJ's, Carrie makes him some toast and a milky coffee. He struggles to get it down. He would prefer a vodka, but she insists and he wants to please her. He misses female company. Somehow she got wind of his sixtieth last year and had a small party for him. He embarrassed himself by crying. Later, Danny comes in. He gives Carrie a little peck on the cheek and she picks a few specks of dust off his shoulder. "Hey, Prof," he says. "I have a question I've been meaning to ask you." "I'm all ears, Daniel." "I was watching this documentary on the TV last weekend. About quantum physics of all things. Don't know how I stumbled upon it, but I thought to myself the Prof would love this. I thought, I bet he used to teach this stuff in the university." "Happens I did," he says. "This dude was talking about the possibility of their being many worlds. I mean many versions of our world. From what I could make out he was saying that every time someone makes a decision, like they have to say yes or no to something ... well, lets pretend they say no, right? Well, ok, then they have to live with the consequences of that decision. But this guy said a lot of scientists think that there is another world where the person says yes and that world goes off on a different track. And then if you think about all the decisions that people make every day and all the things that might happen or might not happen ... a different world for each and all existing together. Imagine. All those versions of me and Carrie and you and ... it did my head in." "But how would you have the space for all those worlds, Ben?" asks Carrie. "There would be millions of them." "An infinity of them, Carrie. Literally uncountable" It turns out to be one of his bad days. Danny has to bring home at eight and put him to bed. He sleeps right through to lunch when Carrie calls him on the phone to check up on him. "Not dead yet," he says and hangs up. There is one world where Laura's car hit a patch of black ice, skidded across the road and smashed into a concrete pillar. In this world, Beth was slow to get up for school and Laura shouted at him not to forget the bins as they ran out the door and he would later wonder why this morning of all mornings he had missed their goodbye kisses. There might be another world. There might be many other worlds. Many worlds where the variables were slightly different and his wife and daughter did not die. There might be many other worlds, but there is this one and he is in it. Not dead yet, but stopped living when they did.

Newsletter Signup

Submit your email address so we can send you occasional competition updates and tell you who wins!

Quantum Theories

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.