Not Dead Yet

4.375
Average: 4.4 (8 votes)
Your rating: None

It’s hard to stay together once you’ve watched your partner die.
Katie never understood this. She thought I was being irrational. “Everyone dies,” she said. Or will say, I’m not sure if she’s actually said it yet. “It’s something that happens. But you and I, we’ll always be together, at least some time. And whenever that is, it always exists somewhere in time, and it always will. Even death won’t do us part. So let’s enjoy our time together, for all time.”
It happened — or it happens — in Egypt in the biblical year 2011. No one knows what Katie is going to be doing back there, or precisely when in her own timeline it occurs, but we both know that it happens. Happened. Is going to happen. Whatever. I have to admit, it was my idea. Let’s tour the early Aughts, I said. The Age of Mass Media, so they called it in our history books. Before the bombs. Before the singularity. When mankind was on the precipice of change, speeding towards The Crash, when the rapid development of technologies opened up new opportunities in a global community faster than their less-evolved brains could ever handle.
The truth is, our relationship was a little strained. We'd been trying to conceive, and, well, it hadn't been going so well. So we met with an Unreal Estate Agent -- "Tachyon Industries, 'Where Realty Meets Reality,' they said in their commercials -- and tried to find a trip, some experience, that might bring us back together.
And so we visited the times when the world truly began to change and evolve into the time from which we came. Our travel itinerary included stops at all of the most important historical events of the era, so that we could witness them first hand. Thus we found ourselves in the territory formerly known as Egypt somewhere near the end of the First Month of the biblical year 2011. Katie wanted to see the pyramids; I wanted to watch a revolution. They’re much more exciting.
We pushed our way through the steaming, sweating crowds of savages and supplicants to get a better view, and that’s when I saw her. She was the same as the woman standing beside me, only older, more tired and worn. She’d lost some weight — not that Katie had much to lose in the first place — and she looked as though she hadn’t slept in years. Perhaps she hadn’t at that. I hesitated for a moment, unsure of whether or not I should direct Katie’s attention to what appeared to be her Future Self before us, but that moment was just long enough to allow a bullet hit her in the temple and splash her beautiful brain across the statue in the square.
Katie and I returned to our hotel room. We slept on opposite sides of the bed that night and never touched. She tried to reach over once, but I moved myself down to the floor. The next day, I told her it was over. It was pointless for us to stay together, knowing that would be our future. I kissed her once before I left, but all I could see was the slow-motion bullet break against her skull.
Sometimes I return to then, and watch the scenario play out in real-time. Maybe one of these times, I’ll point Katie out to herself, and I don’t know, maybe she’ll turn her head to watch and it will cut the air just right to move the bullet off its course and save her life. But every time she dies, and I miss her just a little more.

About the Author: 
Thom Dunn is a Boston-based Writer/Musician/New Media Artist. He enjoys quantum physics, Oxford Commas, and romantic clichés, especially when they involve whiskey. He is a graduate of Clarion Writer's Workshop at UCSD and Emerson College. He also has a Tony Award. thomdunn.net

Newsletter Signup

Submit your email address so we can send you occasional competition updates and tell you who wins!

Quantum Theories

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.