Scenario Q

4
Average: 4 (1 vote)
Your rating: None

 
Scenario Q
PROLOGUE
  In 1978 Douglas Adams published The Hitchhikerʼs Guide to the Galaxy. In it he described Deep Thought, a computer created by a pandimensional hyperintelligent race of beings to answer the ultimate question of life, the universe and everything else. After carrying out 7,500,000 years of calculations it produced the final answer: 42.
NOTE
   It is important to note that the micro-story which follows contains
many truths fictionalized by me to cloak them for reasons of privacy.
However, as spacetime flows forward inflation is inevitable. As such the Q
scenario is 118% true.
SCENARIO
    Everyone is in tune with the universe sometime. I never done no
survey or anything. I just know it in my gut. Like you know your kidneys are
working even though you canʼt prove it right then. Think about it.
But I digress.
   So I am sitting in this back street cabaret in the west end - well I
wasnʼt so much sitting as leaning up against a table with a chair wedged
up against my back and it werenʼt no actual west-end cabaret so much as a
dark seedy pub over toward the west side of town - but on a back street -
that it was. So like I said Iʼm hanging out in this pimple on the belly of the
beast just grooving on the cosmic flow emanating from an out of tune piano
with an in tune player on the bench when a gust of something blows the
doors open and these two are left standing at the bar, this long tall dude in
black leathers and a chick who was - well - something else.
    The lady spoke first: “Iʼll have a triple quark with lots of colour and
charm and a dash of strangeness. A shot of WIMPS for the man.”
“Weakly Interacting Massive Particles?” queried the bartender.
“You got it!” responded the iridium blonde.
Then black leather sort of addresses the house like some mod snake oil
salesman. “Allow me to do a brief introduction. I am ʻEʼ, a quantum
mechanic, and my traveling companion is ʻQʼ, a 12-D string cosmologist.”
And with that he reaches into his brain and retrieves a rather nasty looking
equation. Let me iterate that Iʼm no mathematical slouch but I ainʼt never
come across functions like this - even in my darkest nightmares.
The piano player stops mid-cord. The strings swallow their final vibrations
which cease like photons crossing their final event horizon. The silence is
so deafening that I canʼt even hear my own heart tick. For a nanosec Iʼm
dead.Then post-climatically the snap of Qʼs laptop shatters the crystal
stillness and the pub shifts back into reality. Qʼs data entry is so swift in
three dimensions I canʼt imagine why she needs another nine for anything.
But like Iʼm going to say: “sometimes you learn a little and end up knowing
a lot”.
    This number crunching goes on for what seems like a couple of
millennia - and yet itʼs as if we are in a time warp or something ʻcause
everyone in the place, the piano player, the bartender and me (okay, I
never told you this dive was a popular hang out did I?) is fixated on these
two sci-cats. As I sit there growing older - in a meditative sort of mood - I
feel my mind filling up as if a syringe of industrial waste is injecting pure
thrash into my cerebral cortex. What starts out as a buzz quickly escalates
into a high pitched megadecibel drone which threatens to exacerbate an
already unbearable case of intracranial echo. At just three nanometres this
side of psychotic Q stops. A brief consultation appears to transpire. Q
suggests that we are privy to a momentous discovery.
“Deep Thoughtʼs buffer ...” she begins tentatively - allowing time for
synaptic connections to register the subject, “lost a digit. The answer was
supposed to be 442.” she concludes.
     They are gone. The barkeep is sterilizing their glasses. The piano
player is out of tune. And me? Instead of a real scoop I get a rude
awakening. Do you have any idea how many D.Adams entries there are in
the London phone book?
But then Iʼll never come by this way again.
Think about it!

About the Author: 
I am a retired chemist living on a rather large island in an awkwardly small beach town with a very extensive stretch of sand at the edge of the community park. None of my close friends can be in two or more places at the same time.

Newsletter Signup

Submit your email address so we can send you occasional competition updates and tell you who wins!

Quantum Theories

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.