Dual Existence

2
Average: 2 (5 votes)
Your rating: None

If the world is ending tomorrow, what would you most like to do right now?
He stands alone in his whitewashed studio, confronting a blank canvas. Paintbrush in hand, he dips the bundle of bristles into the burgundy paint and stirs. Like decanting an old red wine that has just awakened from slumber, releasing all its fine aroma far and wide.
He raises the brush, still dripping slightly, and swings his arm in an arc. The paintbrush makes a gentle yet firm contact with the canvas. Swish, swish, scratch, the brush leaps back and forth in an attempt to resuscitate the empty whiteness.     
If the world is ending tomorrow, what would you most like to do right now?
She stands alone at the edge of a pristine jungle, the dense leaves and intricate vines simultaneously beckoning and menacing. The faint bird calls and monkey howls only entice her to enter, to search for clues and solve the mysteries within.    
With each step taking her deeper into the jungle, she feels she is walking further away from her previous life. Which, by some twist of relativity, is slipping away faster and faster. Accelerating past an event horizon and into a singularity, forever out of reach.  
| | | | | | | | |
 
He has chosen to stay in one place for all eternity and she has chosen to keep moving for all eternity, in order to sustain the duality that keeps our space-time fabric intact.
The dead cannot come back to life, no matter how strongly you wish it to be so.
There is only one thing to do. Only one thing you can do.
Believe in the future.

Newsletter Signup

Submit your email address so we can send you occasional competition updates and tell you who wins!

Quantum Theories

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.