Schrödinger's Bat

3
Average: 3 (2 votes)
Your rating: None

So you want to know how an umpire calls strikes? Odd you should ask me this on the eve

of my retirement. There is a trick to it. A trick that took me a long time to learn. I probably shouldn't

reveal it, because there are a lot of young umpires out there who might read your article and be

roundly confused by it. Guys who have worked hard to get to the point that they are confident calling

'em like they see 'em. That's how I did it too.

Until one day, back in '87, I was behind the plate. It was the bottom of the ninth, home team down by

one. There was some kid at bat whose name I could never quite remember. The reliever

was tiring. So they brought in Goss. I knew he would throw mostly fastballs, with an occasional curve.

Mostly right over, not too hard to call if it hadn't been for the fact that he threw so fast you could hardly

see the ball. That's the thing about a fastball. A batter has about two-tenths of a second to react

properly before the ball goes by him, so its just about all reflex. A lot of times the batter never has time

to swing. Then it's up to me. I have to say, yes it was over, or no, it missed.

Some people agree with me, some don't.

So there I was, behind the catcher, and Goss is staring down that 60 feet six inches. The kid with the

funny name is standing in the box, coiled like a spring. The next pitch would determine if he was out,

or if he stayed alive. And it was probably up to me. That's when I realized. The very next pitch had just

as good a chance of being a strike as being a ball. If I saw one thing, the kid was still in the box. If I

saw it the other way, he was gone. And no one could change that. No matter what they said or thought

about it.

So, how do I call a strike? Here's how: It ain't nuthin' til I say so.

About the Author: 
Jefferson Thomas works in the integration/interoperability software field. He likes to read about Quantum Theory, Consciousness, Neurology and Artificial Intelligence, and write Science Fiction.

Newsletter Signup

Submit your email address so we can send you occasional competition updates and tell you who wins!

Quantum Theories

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.