A Time For Kings

4.454545
Average: 4.5 (11 votes)
Your rating: None

The earth was dying. As Chase and Lorna traversed the now barren lands of Brazil, it became more and more apparent that this could be their last expedition. The rest of their crew had long since turned back and they had used the last of their water. One hundred years ago, the United Nations, in an attempt to quell the plagues in India, had launched an experimental insecticide program. Unfortunately at about the same time in Switzerland there was a catastrophic disaster at the Large Hadron Collider. These two events in conjunction with an atomic explosion in Pakistan, created this cocktail of destruction. First, India and then worldwide, all insects started dying. It was inevitable that plant life and then animals would follow the same path. Chase had spent the last ten years searching the planet for insect life of any kind, knowing full well it could be too late already. Lorna was dehydrated and they were both struggling to keep moving,when they found a cave to cool off in. Exhausted, they both fell asleep instantly. As he slept, Chase dreamed of a time before the famines when countries defended their borders and were governed by presidents,tyrants and the lot. He had not been born yet but his grandfather had bored him many times with tales of the good old days. Anarchy was all he had ever known and survival had pushed the arts and sciences into near oblivion. There were still small pockets of civilized groups here and there and it was in one of them that he had met Lorna. It could have been hours or days, but when he woke up they were surrounded by fresh fruits and clean water. Then out of the darkness a man approached him. " Why are you here?". Chase tried to be calm, but soon started rambling about his mission and how his search had led him to Brazil. He explained his theoryabout how if he could just find some kind of way to kickstart mother nature and infuse the planet with insect life again that maybe Earth could thrive once more. "Then I will take you to our kings". replied the man. As he and Lorna were being led deeper into the cave he wondered if they were going to their deaths, maybe to a meeting with some malevolent leaders. Lorna noticed it first,a light was growing brighter as they moved on. "Thank god" she sighed,"My head is really spinning now". When they were finally out, what they saw was wonderous. A myriad of trees and other plants, all blossoming with fruits and berries. Chase had never seen so much color. Even the air smelled sweeter. His heart was racing now. "How is this possible?". To which the man replied. "We owe it all to our kings". "Please take us to see them, we need to speak with them,the survival of mankind depends on it." Lorna pleaded. He led them to a field. Above it was a large orange cloud. As it descended,all became clear.Millions of them. Monarch butterflies

Tags: 

Newsletter Signup

Submit your email address so we can send you occasional competition updates and tell you who wins!

Quantum Theories

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.