What's in a Name?

Average: 2.5 (2 votes)
Your rating: None

Done!  I’d signed the contract.  Never really doubted that I would.  The signature on the dotted line I recognized as mine yet not mine.  Sandra would not have been be fooled. The angular compressed letters, upright to the point of pedantry Indicative of a repressed personality, she said.  Does our signature really give much away?  I doubt it.  Or rather hoped it did not.  Too late now.  I should have tried to disguise my handwriting but then my alias only needed to hold until the morrow. 

The morning was hard and bright as I left the headquarters of our nation’s secret service.  It had been some time since I last walked this broad once gracious avenue. Those stately buildings of stone imitating those of the grand cities of the old world had been replaced with gleaming towers.  Cold and unforgiving, no vines could ever take hold on their smooth surfaces.  Having grown accustomed to the softer more diffuse light in the cooler climes of my exile, I had to shade my eyes with my hand from the piercing shafts of sunlight.  I flinched as I imagined the accusation of treachery levelled at me by my former comrades in the diaspora.  My appointment with the leader of the small remaining band of dissidents was scheduled for 900 hours.  The hour of his death and my, or rather my alias’s, reconciliation with the new authority.  To begin life anew under another guise that was the promised reward for my subterfuge.  Infiltrate those with whom I had once shared a common goal-ideal?  No, goal.  Ideal suggests something noble.  Since Sandra’s death however, I had begun to question our ideals.  For what had we sought other than to protect the once decadent and luxurious life afforded to those of us among the elite of this former colony?

Only an hour ago, the task seemed simple enough.  The murder, the collection of relevant information, I was still confident I could accomplish these tasks.  But once the deed was done, to find a place for me in this new order no longer seemed so straightforward.  Who would I be?  How could I find a home in this city without qualities?  The mirrored facades of the new buildings on both sides of the avenue reflected each other in an infinite regress.  The city had become a labyrinth of mirages, endlessly repeating themselves with increasing distortions due to the refraction of light bouncing off curved surfaces, some convex others concave.  Could there be any reality in which to root oneself where all was just image? 

Reality?  I remembered those languid afternoons when we, the luxurious ones, sipped our cocktails and philosophized under vine-covered arched colonnades.  

     “Information is more fundamental, perhaps more real than matter or even energy.  Although, of course, the last two are interchangeable.”

      “It’s all up/down quarks and electrons, my body, your body, the body of a tiger.”

      “The organizing principle of information is what distinguishes us?”

      “So reality is at a fundamental level abstract?  I cannot accept that.”

      “Not so.  Rather it is substrata independent.”


      “Information can remain unchanged through successive or multiple instantiations in physical objects.”

      “But must it be physically embodied?  Does it not exist in some Platonic realm?”

      “Not as some mathematicians might have it.  Physics has yet to fully account for this substrata independence.  It will need a deeper more fundamental explanation than currently exists.”

 After an hour of walking, I approached the junction where the avenue forked into two narrower roads.  Reflected in the facade of one of the buildings set at an oblique angle to the road, I recognised the familiar arched colonnades.  My handler had foreseen, as I suspected he might have done, that I should find the place I was seeking.  The original must be nearby and those whom I sought must be hiding there.   A foolish choice and I pitied them for making my task so easy. 

However, as I came to the junction where the roads converged, I realized that I was trapped, encircled by the same glass towers as before, each angled in such a way to produce multiple reflections of a building that no longer existed.  No longer existed?  I approached the facade which most faithfully reflected my old haunt.  The shadowy depths underneath the arched colonnades may only be illusory; yet they still held the memory of our intrigues.  All the information of who we had been, of what we had thought and who we had loved was encoded on the glazed membrane of the building ahead.  My alias had not held.  And even under another name, I had no place in this new society.  I was a condemned man as were those others who may still be alive to preserve in memory what may have been left of our civilisation.  Unless.  I took aim at my reflection and pulled the trigger.  The glass shattered and in the flying shards that whizzed past I saw fractured the images of all our memories, all the information that would have condemned my former comrades not destroyed exactly but sufficiently disordered to be unrecoverable.  I knew I was soon to die but at the very last I also knew, I had been no traitor.




Newsletter Signup

Submit your email address so we can send you occasional competition updates and tell you who wins!

Quantum Theories

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.